Int (x^4-1)^2 * 4x^3 dx
Let u
= x^4 ==> du = 4x^3 dx
==> intg (x^4 -1)^2 (
4x^3) dx = intg (u-1)^2 * du.
Let us integrate with respect
to u.
==> intg (u-1)^2 du = intg (u^2 - 2u + 1)
du
= intg u^2 du - intg 2u
du + intg 1 du.
= u^3/3 -
2u^2/2 + u + C
==> intg (u-1)^2 du = (1/3)u^3 - u^2
+ u + c
Now we will substitute with u=
x^4
==> intg (u^2-1)du = (1/3)(x^4)^3 - (x^4)^2 +
x^4 + C
= (1/3)x^12 - x^8 +
x^4 + C
==> intg (x^4-1)^2 * 3x^2 dx =
(1/3)x^12 - x^8 + x^4 + C
No comments:
Post a Comment