1) To calculate the first expression, we'll expand the
squares, using the formulas:
(a+b)^2 = a^2 + 2ab +
b^2
(a+b+c)^2 = a^2 + b^2 + c^2 +
2(ab+ac+bc)
(x+y)^2 = x^2 + 2xy +
y^2
(x+y+1)^2 = x^2 + y^2 + 1 + 2(xy + x +
y)
We'll re-write the expressions substituting the
squares:
E (x,y) = x^2 + 2xy + y^2 + x^2 + y^2 + 1 + 2(xy +
x + y) - (3x^2 + 4xy) + (y-1)
Now, we'll remove the
brackets and combine like terms:
E(x,y) = 2x^2 + 2y^2 + 2xy
+ 1 + 2xy + 2x + 2y - 3x^2 - 4xy + y - 1
We'll combine and
eliminate like terms:
E(x,y) = 2x^2 + 2y^2+ 2x + 2y - 3x^2
+ y
E(x,y) = -x^2 + 2y^2 + 2x +
3y
2) Now, we'll calculate the
expression:
x^2003 - 1 - (x -1)(x^2002+ ...+ x+1)
=...
We'll use the
formula:
x^n - 1 = (x-1)(x^(n-1) + x^(n-2) + ......... + x
+ 1)
We'll substitute n by
2003
x^2003 - 1 = (x-1)(x^2002 + x^2001 + ........ + x +
1)
We'll re-write the
expression:
E (x) = (x-1)(x^2002 + x^2001 + ........ + x +
1) - (x -1)(x^2002+ ...+ x+1)
We'll eliminate like
terms:
No comments:
Post a Comment