Let F(x) = intg (cos2x / sin2x)^3
dx.
Let us assume that y =
sin2x.
==> dy = 2cos2x. dx ==> dx =
dy/2cos2x
Let us
substitute.
F(x) = int cos2x/ y^3 *
dy/2cos2x
= intg dy / 2y^3
.
= intg (1/2) y^-3
dy
Let us
integrate.
==> F(x) = (1/2) y^-2 / -2 +
C
==> F(x) = (1/-4) y^-2 +
c
= 1/(-4y^2) +
C
Now we will substitute with y=
sin2x
==> F(x) =- 1/[4(sin2x)^2] +
C
No comments:
Post a Comment