To find the derivatives of the
following:
i)
f(x)= x^4 +
3x^2+4x-31
Differentiating both sides, we
get:
f'(x) =
(x^4+3x^2+4x-31)'
f'(x) = (x^4)' +(3x^2)'+(4x)'- (31)', as
(f(x)+g(x))' = f'(x)+g'(x).
f'(x) = 4x^3+3*2x+4-0, as
d/dx(k x^n ) = knx^(n-1).
f'(x) =
4x^3+6x+4.
ii)
f(x)=2(x+3)e^x.
Differentiating
both sides, we get:
f'(x)
={2(x+3)e^x}'
f'(x) = {2(x+3)}' e^x
+(2(x+3)(e^x)'
f'(x) = 2e^x+2(x+1)e^x , as (e^x)' =
e^x.
f'(x) =
2(x+4)e^x.
iii0
f(x)=
(2x-1)e^x-3 . We assume -3 is separate not in power of
e.)
Differentiating both sides, we
get:
f'(x) = (2x-1)'e^x+(2x-1)(e^x)'
-(3)'
f'(x) = 2e^x
+(2x-1)e^x-0
f'(x) = 2e^x+2xe^x
-e^x.
f'(x) =(2x+1)e^x.
No comments:
Post a Comment