We'll note the given relations
as:
sina + sinb = 1 (1)
cosa
+ cosb = 1/2 (2)
We'll raise to square (1), both
sides:
(sina + sinb)^2 =
1^2
We'll expand the
square:
(sin a)^2 + 2sina*sinb + (sin b)^2 = 1
(3)
We'll raise to square (2), both
sides:
(cosa + cosb)^2 =
(1/2)^2
We'll expand the
square:
(cos a)^2 + 2cos a*cos b + (cos b)^2 = 1
(4)
We'll add (3) + (4):
(sin
a)^2 + 2sina*sinb + (sin b)^2 + (cos a)^2 + 2cos a*cos b + (cos b)^2 = 1 +
1/4
But, from the fundamental formula of trigonometry,
we'll get:
(sin a)^2 + (cos a)^2 =
1
(sin b)^2 + (cos b)^2 = 1
1
+ 1 + 2(cos a*cos b + sina*sinb) = 5/4
We'll subtract 2
both sides:
2(cos a*cos b + sina*sinb) = 5/4 -
2
2(cos a*cos b + sina*sinb) =
-3/2
We'll divide by 2:
cos
a*cos b + sina*sinb = -3/4
We'll recognize the formula in
the sum from the left side, the formula of cos (a -
b):
cos (a - b) =
-3/4
No comments:
Post a Comment