To solve (-sinx)^4 + (cosx)^4 =
1:
We know (cosx)^2 +(sinx)^2 = 1 , the trigonometric
identy.
To solve the equation we put on the right 1=
{(sinx)^2+(cosx)^2}^2.
Then (-sinx)^4 +(cosx)^4 =
{(sinx)^2+(cosx)^2}^2.
Then (sinx)^4 + (cosx)^4 = (cosx)^4
+ 2(sinx)^2*(cosx)^2 +(cosx)^4 , as the coefficient (-1)^4 =
1.
0 = 2(sinx)^2 (cosx)^2. Other terms
cancel.
(sinx)^2 = 0. Or( cosx)^2 =
0
sinx = 0. Or cosx = 0
sinx
= 0 gives: x = npi, n =0,1,2,...
cosx = 0 gives: x = (2n +
or - 1)pi , n = 0, 1,2,.
No comments:
Post a Comment