We have to prove that (cos pi/4 + i*sin pi/4)^2008 is
            real.
Now (cos pi/4 + i*sin
            pi/4)^2008
=> (cos pi/4 + i*sin
            pi/4)^2^1004
=> [ (cos pi/4)^2 + i^2*(sin pi/4)^2 +
            2*i*(cos pi/4)(sin pi/4)]^1004
Now i^2 =
            -1
=> [ (cos pi/4)^2 - (sin pi/4)^2 + 2*i*(cos
            pi/4)(sin pi/4)]^1004
(cos x)^2 - (sin x)^2 = cos
            2x
=> [(cos pi/2) + 2*i*(cos pi/4)(sin
            pi/4)]^1004
cos (pi/2) =
            0
=> [2*i*(cos pi/4)(sin
            pi/4)]^2^502
=> [4*i^2 *(cos pi/4)^2*(sin
            pi/4)^2]^502
=> [-16*(cos pi/4)^2*(sin
            pi/4)^2]^502
This is real as i has been
            eliminated.
Therefore (cos pi/4 + i*sin
            pi/4)^2008 is real.
 
No comments:
Post a Comment