To solve sqrt(x^2-5x+3) =
sqrt(x^2+4x-1).
We rearrange this
as:
sqrt(x^2-5x+3) -sqrt(x^2+4x-1) =
0.
We rationalise te
numerator:
{sqrt(x^2-5x+3)-sqrt(x^2+4x-1}{sqrt(x^2-5x+3)+sqrt(x^2+4x+1}/{sqrt(x^2-5x+3)+sqrt(x^2+4x-1}
= 0
(-5x+3-4x-1)/{sqrt(x^2-5x+3)+sqrt(x^2+4x-1} =
0
Multiply both sides by {sqrt(x^2-5x+3)+sqrt(x^2+4x-1} and
we get:
-5x+3-4x+1 = 0
-9x+4
= 0.
-9x= -4
x = -2/-9 =
2/9.
Therefor x = 4/9 is the
solution.
No comments:
Post a Comment