f(x) = cosx / (1+ sinx)
To
differentiate we will will assume that:
u= cosx
==> we know that du = -sinx
v= 1+ sinx
==> v' = cosc
Then, f(x) =
u/v
We know that , f'(x) = (u'v-
uv')/v^2
Let us subsitute with u and v
:
==> f'(x) = [-sinx (1+sinx) -
(cosx*cosx)]/(1+sinx)^2
Now let us expand the
brackets:
==> f'(x) = (-sinx - sin^2 x - cos^2
x)/(1+sinx)^2
= -sinx - (sin^2 x + cos^2
x)/(1+sinx)^2
But we know that : sin^2 x + cos^2 x =
1
==> f'(x) = (-sinx
-1)/(1+sinx)^2
==> f'(x) =
-(sinx+1)/(1+sinx)^2
==> f'(x) =
-1/(1+sinx)
No comments:
Post a Comment