To find x if sin2x+2sinx-cosx-1 =
0
We know that sin2x = sin(x+x) =
2sinxcosx.
Therefore substituting sin2x = 2sinxcosx in the
given equation, sin2x+2sinx -cosx -1 = 0, we get:
2sinxcosx
+2sinx -cosx -1 = 0.
2sinx (cosx+1) - 1(cosx+1) =
0.
(cosx-1)(2sinx-1) =
0.
Equating each factor to zero we
get:
cosx-1 = 0 . Or 2sinx -1=
0
cosx -1 = 0 gives cosx = 1. So x = 2npi, n =
0,1,2,...
2sinx -1 = 0 gives sinx = 1/2 . Or x = npi +
(-1)^n*pi/6, n = 0, 1,2,....
No comments:
Post a Comment