We'll consider the complex number put into the polar
form:
z = cos 20 + i*sin 20
(1)
We'll write the conjugate of
z:
z^-1 = cos 20 - i*sin
20
1/z = cos 20 - i*sin 20
(2)
We'll add (1) + (2):
z +
1/z = cos 20 + i*sin 20 + cos 20 - i*sin 20
We'll combine
and eliminate like terms:
z + 1/z = 2*cos
20
We'll multiply z by z:
(z^2
+ 1)/z = 2*cos 20
We'll use symmetric
property:
2*cos 20 = (z^2 +
1)/z
We'll divide by
2:
cos 20 = (z^2 + 1)/2z
(3)
cos 40 = cos 2*(20) = 2 (cos 20)^2 -
1
We'll substitute cos 20 by
(3):
cos 40 = 2 (z^2 + 1)^2/4z^2 -
1
cos 40 = (z^2 + 1)^2/2z^2 -
1
We'll raise to square the binomial z^2 +
1:
cos 40 = (z^4 + 2z^2 + 1)/2z^2 -
1
We'll multiply -1 by
2z^2:
cos 40 = (z^4 + 2z^2 + 1 -
2z^2)/2z^2
We'll eliminate like
terms:
cos 40 = (z^4 + 1)/2z^2
(4)
cos 80 = cos 2*(40) = 2 (cos 40)^2 - 1
(5)
We'll substitute (4) in
(5):
cos 80 = 2 (z^4 + 1)^2/4z^4 -
1
cos 80 = (z^4 + 1)^2/2z^4 -
1
We'll raise to square the binomial z^4 +
1:
cos 80 = (z^8 + 2z^4 + 1)/2z^4 -
1
We'll multiply -1 by
2z^4:
cos 80 = (z^8 + 2z^4 + 1 -
2z^4)/2z^4
We'll eliminate like
terms:
cos 80 = (z^8+
1)/2z^4
Now, we'll calculate the
product:
P = [(z^2 + 1)/2z]*[(z^4 + 1)/2z^2]*[(z^8+
1)/2z^4]
P = (z^2 + 1)*(z^4 + 1)*(z^8+
1)/8z^7
If z^2 + z + 1 = 0 and z^3 =
1
P = (-z)(-z^2)(-z)/8z
P =
-z/8z
P =
-1/8
No comments:
Post a Comment