To solve sin^2x+sinxcosx-4cos^2+1 =
0.
We know that sin^2x +cos^2x =
1.
So cos^2x = 1-sin^2x. We substitute cos^2x = 1-sin^2x in
the given equation:
sin^2x+sinxcosx-4(1-sin^2x) +1 =
0.
sin^2x+sinxcosx-4+4sin^2x +1 =
0.
5sin^2 -3 =
-sinxcosx.
squaring, we
get:
25sin^4x-30sin^2 +9 =
sin^2xcos^2x.
25sin^4x -30sin^x+9=
sin^2x(1-sin^2x).
25sin^2x-30sin^2x+9=
sin^2x-sin^4x.
26sin^4x - 31sin^2x+9 =
0.
26sin^4x-18sin^2x-13sin^2x +9 =
0.
2sin^2x(13sin^2x-9)-1(13sin^2-9) =
0.
(2sin^2x-1) (13sin^2x+9) =
0.
2sin^2x-1 = 0 , Or 13sin^2x+9 =
0.
2sin^2 = 1.
sin^2x =
1/2.
sinx = sqrt(1/2) . Or sinx =
-sqrt(1/2).
Sinx = 1/2 goves: x = 45 degree or x= 180-45 =
135 degree.
sinx = -1/2 gives x = - 45 degree (= 315deg) Or
x = 225 degree.
13 sin^2 x +9 = 0 does not give any real
solution.
No comments:
Post a Comment