We'll use the identity of triple
angle:
(sin x)^3 = (3sin x - sin
3x)/4
(cos x)^3 = (cos 3x + 3cos
x)/4
We'll substitute th reltions above into
equation:
sin 3x*(3sin x - sin 3x)/4 + cos 3x*(cos 3x + 3cos x)/4 =
0
We'll remove the brackets:
3sin x*sin
3x - (sin 3x)^2 + (cos 3x)^2 + 3cosx*cos 3x = 0
We'll group the 1st
and the last terms:
3(sin x*sin 3x + cosx*cos 3x) + [(cos 3x)^2 -
(sin 3x)^2] = 0
We notice the
formula:
cosx*cos 3x + sin x*sin 3x = cos(3x - x) = cos
2x
3cos(3x - x) + cos 2*3x = 0
3cos 2x
+ cos 6x = 0
3cos 2x + cos 3*2x =
0
3cos 2x + 4(cos 2x)^3 - 3cos 2x =
0
We'll eliminate like terms:
4(cos
2x)^3 = 0
We'll divide by 4:
(cos 2x)^3
= 0 <=> cos 2x = 0
2x = +/-arccos 0 +
2kpi
2x = +/-(pi/2) + 2kpi
x =
+/-(pi/4) + kpi
x = (2k + 1)*(pi/4), where k is an integer
number.
The solutions of the equation are: {(2k +
1)*(pi/4)}.
No comments:
Post a Comment