We'll expand cosine of the
sum:
cos (a+b) = cos a*cos b - sin a*sin
b
From enunciation, we know
that:
cos a*cos b - sin a*sin b =
1
cos a*cos b = 1 + sin a*sin b
(1)
Now, we'll expand the function sin
(2a+b):
sin (2a+b) = sin 2a*cos b + sin b*cos
2a
We'll re-write the factor sin
2a:
sin 2a = sin(a+a) = 2sin a*cos
a
We'll re-write the factor cos
2a:
cos 2a = cos (a+a) = 1 - 2(sin
a)^2
We'll re-write the
sum:
sin (2a+b) = 2sin a*cos a*cos b + sin b*[1 - 2(sin
a)^2]
We'll substitute the product cos a*cos b by
(1):
sin (2a+b) = 2sin a*(1 + sin a*sin b) + sin b*[1 -
2(sin a)^2]
We'll remove the
brackets:
sin (2a+b) = 2sin a + 2(sin a)^2*sin b + sin b
- 2(sin a)^2*sin b
sin (2a+b) = 2sin a + sin
b
No comments:
Post a Comment