Let the function be f(x) = ax^2 + bx +
c
Given the points ( -1, 4) , (1, 2), and ( 2,7) are on the
curve f(x).
Let us substitute
:
==> f(-1) = a(-1)^2 + b(-1) + C =
4
==> a - b + c =
4.................(1).
==> f(1) = a(1^2) +b(1) + C =
2
==> a + b + c =
2...............(2).
==> f(2) = a(2^2) + b(2) + C =
7
==> 4a + 2b + C =
7.............(3).
Now we have a system of 3 equations and
3 variables.
We will use the elimination method to
solve.
Let us add (1) and
(2).
==> 2a+ 2c =
6
==> a + C = 3
...............(4).
Now we will add 2*(1) and
(3)
==> 2a-2b + 2c =
8
==> 4a+2b + C =
7
==> 6a + 3c =
15
==> 2a + c =
5............(5)
Now subtract (4) from
(5).
==> a =
2
==> c = 1
==>
b = -1
==> f(x) = 2x^2-x +
1
No comments:
Post a Comment