We'll use the formula sin ax = -(cos ax)'/a and we'll integrate
by parts:
Int x*sin2x dx = Int x*[-(cos 2x)]'
dx/2
We'll note u = x => u'du =
dx
v'dv = -(cos 2x)'dx/2 => v = -(cos
2x)/2
Int udv = uv - Int vdu
Int
x*sin2x dx =-x*(cos 2x)/2 - Int-(cos 2x)dx/2
Int x*sin2x dx =
-x*(cos 2x)/2 + (sin 2x)/4 + C
Therefore, using
integration by parts, we've get the result: Int x*sin2x dx = -x*(cos 2x)/2 + (sin 2x)/4 +
C.
No comments:
Post a Comment