y= (2x-1)/(x+7)^3
Let y=
(u/v)^3
==> y' = 3*(u/v)'
(u/v)^2
But (u/v)' =
(u'v-uv')/v^2
==> y' = 3*[(u'v-uv')/v^2]
*(u/v^2)
= 3*[uu'v -
u^2*v]/v^4
u= 2x-1 ==> u' =
2
v= x+7 ==> v' = 1
Now
substitute:
==> y' = 3[2(2x-1)(x+7) - (2x-1)^2
]/(x+7)^4
= 6(2x^2+13x -7) - (4x^2 -4x +
1)]/(x+7)^4
= (12x^2 + 78x - 42 - 4x^2 + 4x
-1)/(x+7)^4
= (8x^2 +82x -
43)/(x+7)^4
==> y' = (8x^2 + 82x -
43)/(x+7)^4
No comments:
Post a Comment