Tuesday, January 20, 2015

Prove sin^2 (pi/4 + x/2)/sin^2(pi/4 - x/2) = (1+ sin x)/(1 - sin x)

The identity to be proved is [sin (pi/4 + x/2)]^2/[sin(pi/4 -
x/2)]^2 = (1+ sin x)/(1 - sin x)


We know that cos 2x = 1 – 2*(sin
x)^2


=> (sin x)^2 = (1 – cos
2x)/2


Let’s start with the left hand side of the given
identity


[sin(pi/4 + x/2)]^2/[sin(pi/4 -
x/2)]^2


=> [(1 – cos(pi/2 + x))/2]/[ (1 – cos(pi/2 -
x))/2]


use cos (pi/2 - x) = sin
x


=> ( 1 – (-sin x))/(1 - sin
x)


=> (1 + sin x)/(1 – sin
x)


which is the right hand
side.


This proves the identity sin^2 (pi/4 +
x/2)/sin^2(pi/4 - x/2) = (1+ sin x)/(1 - sin x)

No comments:

Post a Comment

How is Anne's goal of wanting "to go on living even after my death" fulfilled in Anne Frank: The Diary of a Young Girl?I didn't get how it was...

I think you are right! I don't believe that many of the Jews who were herded into the concentration camps actually understood the eno...