We know that cotx =
cosx/sinx
==> cot 15 = cos 15 /
sin15
Let us
rewrite:
==> cot15 =
(cos(45-30)/sin(45-3)
We know
that:
cos(a-b) = cosa8cosb +
sina*sinb
==> cos(45-30) = cos45*cos30 +
sin45*sin30
= sqrt(2)/2 *
sqrt3/2 + sqrt2/2 * 1/2
=
sqrt6/4 + sqrt2/4
=
(sqrt6+sqrt2)/4
Also we know
that;
sin(a-b) = sina*cosb -
sinb*cosa
sin(45-30) = sin45*cos30 -
sin30*cos45
= sqrt2/2 * sqrt3/2 -
1/2*sqrt2/2
= sqrt6/4 -
sqrt2/4
=
(sqrt6-sqrt2)/4
Now we will subsitute
:
cot15 = (sqrt6+sqrt2)/4 /
(sqrt6-sqrt2)/4
=
(sqrt6+sqrt2)/(sqrt6-sqrt2)
= (sqrt6 +sqrt2)^2
/ (6-2)
= 6 + 2sqrt12 + 2 )/
4
= (8+
4sqrt3)/4
= 2+
sqrt3
==> cot 15 = 2 +
sqrt3
sin75 = sin(90 -
15)
sin(a-b) = sina*cosb -
sinb*cosa
sin(90-15) = sin90*cos15 -
sin15*cos90
= 1*cos15 -
sin15*0
=
cos15
==> sin75 = cos15 =
(sqrt6+sqrt2)/4
No comments:
Post a Comment