Given the function f(x) = (cosx)^3 *
   (lnx)^2.
We need to find the first derivative of
   f(x).
We notice that f(x) is a product of two
   functions.
Then we will use the product rule to find the first
   derivative.
Let f(x) = u * v    such
   that:
u= (cosx)^3     ==>   u' = -3(cosx)^2 *
   sinx
v = (lnx)^2      ==>  v' = 2lnx *
   1/x.
Then we will use the product
   rule:
==> f'(x) = u'*v +
   u*v'
Let us substitute with u, u' , v', and
   v.
           = (-3sinx(cosx)^2 *(lnx)^2 + (cosx)^3
   (2lnx)/x
            = (cosx)^2 (lnx) [ -3sin*lnx +
   2cosx)/x)
==> f'(x) = (cosx)^2 (lnx) [
   -3sin*lnx + 2cosx)/x)
No comments:
Post a Comment