f(x) = 1/(x^2 - 4)
First
wewill implify using partial fractions:
==> 1/(x^2-
4) = 1/(x-2)(x+2)
==> A(x-2) + B(x+2) =
1/(x-2)(x+2)
==> A(x+2) + B(x-2) =
1
==> Ax + 2A + Bx - 2B =
1
==> (A+B)x + 2A-2B =
1
==> A+B = 0 ==> A =
-B
==>2(A-B)=
1
==>2(-B-B) =
1
==> -2B =
1/2
==>B =
-1/4
==>A =
1/4
==> 1/(x-2)(x+2) = 1/4(x-2) -
1/4(x+2)
Now let us
integrate:
intg f(x) = intg (1/4(x-2) - 1/4(x+2) ]
dx
= (1/4) intg (1/(x-2) - 1/(x+2)]
dx
= (1/4) intg (1/(x-2)dx - intg
(1/(x+2)dx
= (1/4) * ln(x-2) - ln (x+2) +
C
= (1/4) *ln(x-2)/(x+2)
+C
==>intg (1/(x^2 -4)= (1/4) ln
(x-2)/(x+2) + C
width="560" height="315" src="https://www.youtube.com/embed/6qVgHWxdlZ0" frameborder="0"
allowfullscreen="">[embedded
content]
No comments:
Post a Comment