We need to find x given (4 - cos 8x)(2 + cos 2x) =
3.
Now, cos 2x = 2(cos x)^2 - 1
cos 8x
= 2(cos 4x)^2 - 1
=> 2(2(cos 2x)^2 - 1)^2 -
1
=> 2*[ 4 (cos 2x)^4 + 1 - 4(cos 2x)^2] -
1
=> 8 (cos 2x)^4 + 2 - 8(cos 2x)^2 -
1
Let cos 2x = y
=> 8y^4 - 8y^2
+ 1
So (4 - cos 8x)(2 + cos 2x) =
3
=> (4 - (8 (cos 2x)^4 - 8(cos 2x)^2 + 1)))(2 + cos 2x) =
3
=> (4 - (8 y^4 - 8y^2 + 1))(2 + y) =
3
=> [ 4 - 8y^4 + 8y^2 - 1](2+y) =
3
=> (3 - 8y^4 + 8y^2)(2 + y) =
3
=> 6 - 16y^4 + 16y^2 + 3y - 8y^5 + 8y^3 - 3
=0
=> 16y^4 - 16y^2 - 3y + 8y^5 - 8y^3 - 3
=0
=> 8y^5 + 16y^4 - 8y^3 - 16y^2 -3y -3
=0
=> 8y^4( y+1) - 8y^2( y+1) - 3(y+1) =
0
=> (y+1)(8y^4 - 8y^2 - 3)
=0
For y +1 = 0 , y = -1
For (8y^4 -
8y^2 - 3) =0
y1 = sqrt [8 + sqrt (64 + 96)] /
16
y1 = sqrt [(8 + sqrt 160) / 16]
y2 =
- sqrt [(8 + sqrt 160) / 16]
y3 and y4 are
complex.
The only valid root is y = -1, the other roots are complex
or greater than 1 and can be ignored.
Therefore cos 2x =
-1
We can find x by taking the arc cos of the values and dividing by
2.
x = 90
degrees.
Therefore x is equal to 90
degrees.
No comments:
Post a Comment