To determine the function f(x), we'll have to
integrate (5x-3)/(x^2+4)
Int (5x-3)dx/(x^2+4) = f(x) +
C
We'll use the additive property of the
integral:
Int (5x-3)dx/(x^2+4) = Int 5xdx/(x^2+4) - Int
3dx/(x^2+4)
We'll note Int 5xdx/(x^2+4) = 5
I1
Int 3dx/(x^2+4) =
3I2
We'll calculate I1 using substitution
technique.
We'll note x^2+4 =
t
We'll differentiate both
sides:
2xdx = dt
We'll
substitute in the original integral and we'll get:
I1 = Int
dt/t
I1 = ln |t| + C, but t = x^2+4 >
0
I1 = ln (x^2+4) + C
5I1 =
5ln (x^2+4) + C
5I1 = ln (x^2+4)^5 +
C
We'll calculate
I2:
I2 = Int dx/(x^2+4)
I2 =
[arctan (x/2)]/2 + C
3I2 = 3[arctan (x/2)]/2
+ C
Int (5x-3)dx/(x^2+4) = ln
(x^2+4)^5 + 3[arctan (x/2)]/2 + C
No comments:
Post a Comment