1) We'll substitute x by the value 1 and we'll calcualte
the limit.
lim (x^a - 1)/(x^b - 1) = (1^a - 1)/(1^b - 1) =
(1-1)/(1-1) = 0/0
Since the result represents
an indetermination, we'll apply L'Hospital rule.
lim (x^a -
1)/(x^b - 1) = lim (x^a - 1)'/(x^b - 1)'
(x^a - 1)' =
a*x^(a-1)
(x^b - 1)' =
b*x^(b-1)
lim (x^a - 1)'/(x^b - 1)' =
lim a*x^(a-1)/b*x^(b-1)
We'll apply the quotient rule of
the power function:
x^m/x^n =
x^(m-n)
We'll put m = a-1 and n =
b-1
x^(a-1)/x^(b-1) =
x^(a-1-b+1)
x^(a-1)/x^(b-1) =
x^(a-b)
lim a*x^(a-1)/b*x^(b-1) = (a/b)*lim
x^(a-b)
We'll substitute x by
1:
(a/b)*lim x^(a-b) = (a/b)*1^(a-b) =
a/b
lim (x^a - 1)/(x^b - 1) =
a/b
No comments:
Post a Comment