f(x) = 3x^3 * cosx
First we
            will treat the funtion as a produt of two functions of
            x.
Let us assume that:
f(x) =
            u(x) *v(x)  such tht:
u(x)= 3x^3     ===>     u'(x)
            = 9x^2
v(x) = cosx    ===>       v'(x) = -
            sinx
Now we know that th product rule
            is:
f'(x) = u'(x) *v(x) +
            u(x)*v'(x)
        = 9x^2 *cosx + 3x^3 *
            -sinx
          = (9x^2)cosx -
            (3x^3)sinx
==> f'(x) = (9x^2)cosx -
            (3x^3)*sinx
 
No comments:
Post a Comment