To determine the indefinite integral, we'll write the
function as a sum or difference of elementary
ratios.
1/(x^2 - 4x) =
1/x(x-4)
1/x(x-4) = A/x +
B/(x-4)
1 = A(x-4) +
B(x)
We'll remove the
brackets:
1 = Ax - 4A +
Bx
We'll combine like terms:
1
= x(A+B) - 4A
A + B = 0
A =
-B
-4A = 1
A =
-1/4
B = 1/4
1/x(x-4) = -1/4x
+ 1/4(x-4)
Int dx/x(x-4) = -Int dx/4x + Int
dx/4(x-4)
Int dx/x(x-4) = -(1/4) (ln |x| - ln|x-4|) +
C
Int dx/x(x-4) = -(1/4)ln |(x)/(x-4)| +
C
No comments:
Post a Comment