We'll transform the sum sin 2a+sin 2b into a
product:
sin 2a+sin 2b = 2sin [(2a+2b)/2]*cos
[(2a-2b)/2]
We'll factorize by 2 inside the
brackets:
sin 2a+sin 2b = 2sin [2(a+b)/2]*cos
[2(a-b)/2]
We'll simplify and we'll
get:
sin 2a+sin 2b = 2sin [(a+b)]*cos
[(a-b)]
But, from enunciation, a+b =
pi/2.
sin 2a+sin 2b = 2sin [(pi/2)]*cos
[(a-b)]
But sin pi/2 = 1
sin
2a+sin 2b = 2cos [(a-b)] q.e.d.
No comments:
Post a Comment