We'll write the formula for cosine of a
half-angle:
cos (x/2) = sqrt[(1 + cos
x)/2]
[cos (x/2)]^2 = [(1 + cos
x)/2]
We'll put (a+b) = x
so:
[cos(a+b)]^2 = [(1 + cos 2(a+b))/2]
(1)
[cos(a-b)]^2 = [(1 + cos 2(a-b))/2]
(2)
We'll add (1) + (2):
[(1 +
cos 2(a+b) + 1 + cos 2(a-b)/2] = 1 + cos 2a*cos 2b
2/2 +
[cos 2(a+b)]/2 + [cos 2(a-b)]/2 = 1 + cos 2a*cos 2b
We'll
eliminate 1 both sides:
[cos 2(a+b)]/2 + [cos 2(a-b)]/2 =
cos 2a*cos 2b
cos 2(a+b) + cos 2(a-b) = 2cos 2a*cos
2b
cos 2(a+b) = 2[cos (a+b)]^2 -
1
cos 2(a-b) = 2[cos (a-b)]^2 -
1
cos 2a = 2 (cos a)^2 - 1
cos
2b = 2 (cos b)^2 - 1
2cos 2a*cos 2b = 2[2 (cos a)^2 - 1]*[2
(cos b)^2 - 1]
2cos 2a*cos 2b = 2{4(cos a)^2*(cos
b)^2-2[(cos a)^2+(cos b)^2] + 1}
[cos (a+b)]^2 = [cos
(a+b)][cos (a+b)] =
(cosa*cosb-sina*sinb)^2
(cosa*cosb-sina*sinb)^2 =
(cosa*cosb)^2 - 2cosa*cosb*sina*sinb +
(sina*sinb)^2
2(cosa*cosb-sina*sinb)^2 = 2(cosa*cosb)^2 -
4cosa*cosb*sina*sinb + 2(sina*sinb)^2
2[cos (a+b)]^2 - 1 =
2(cosa*cosb)^2 - 4cosa*cosb*sina*sinb + 2(sina*sinb)^2 - 1
(3)
2[cos (a-b)]^2 - 1 =2(cosa*cosb)^2 +
4cosa*cosb*sina*sinb + 2(sina*sinb)^2 - 1 (4)
We'll add (3)
+ (4):
2(cosa*cosb)^2 - 4cosa*cosb*sina*sinb +
2(sina*sinb)^2 - 1 +2(cosa*cosb)^2 + 4cosa*cosb*sina*sinb + 2(sina*sinb)^2 -
1
We'll eliminate like
terms:
4(cosa*cosb)^2 + 4(sina*sinb)^2 - 2 = 2{4(cos
a)^2*(cos b)^2-2[(cos a)^2+(cos b)^2] + 1}
No comments:
Post a Comment