We have to find the derivative of Y=
(4e^x)(x^3x)
Now using the product rule we
get
Y' = (4e^x)'*(x^3x) + (4e^x)*(x^3x)'
...(1)
Now (4e^x)' = 4e^x
To
find the derivative of x^3x , let z = x^3x
Take the
logarithm on both the sides
=> ln z = 3x*ln
x
Take the derivative of both the
sides
=> z'*(1/z) = 3x*(1/x)+3*ln
x
Substituting z=
x^3x
=> z'(1/ x^3x) = 3 + 3 ln
x
=> z' = 3x^3x + 3x^3x * ln
x
=> (x^3x)' = 3x^3x + 3x^3x * ln
x
Now substitute these values in
(1)
Y' = (4e^x)*(x^3x) + (4e^x)*(3x^3x + 3x^3x * ln
x)
=> Y' = (4e^x)*(x^3x)*[1 + (3 + 3 * ln
x)]
=> Y' = (4e^x)*(x^3x)*(4 + 3 * ln
x)
Therefore the derivative of (4e^x)(x^3x)
is (4e^x)*(x^3x)*(4 + 3 * ln x)
No comments:
Post a Comment