f(x) = 1/(1+ sqrtx)
Let us
use the substitution method to solve:
let x=
u^2
==> dx = 2u du
Now
we will substitute:
intg f(x) = intg (1/(1+u)
2udu
= intg (2u/(1+u)
du
Now simplify using polynomial
division:
=> intg f(x) = intg ( 2 - 2/(u+1)
du
= intg 2 du - 2 intg (1/u+1)
du
= 2u - 2 ln(u+1) +
C
Now subsitute with u=
sqrtx
==> intg f(x) = 2sqrtx -
2ln(sqrtx + 1) + C
No comments:
Post a Comment