f(x) = 3x^3 + 5x^2 - 3x + 6
First,
we will find the integral of f(x).
Let F(x)
= integral f(x)
Then, the definite integral is given
by:
F = F(1) - F(0)
Let us
calculate.
F(x) = intg f(x)
=
intg ( 3x^3 + 5x^2 - 3x + 6) dx
= intg 3x^3 dx + intg 5x^2
dx - intg 3x dx + intg 6 dx.
= 3x^4/4 + 5x^3/3 - 3x^2/2 +
6x + C
==> F(x) = (3/4)x^4 + (5/3)x^3 -(3/2) x^2 + 6x +
C.
Now we will substitute with x=
1.
==> F(1) = (3/4) + (5/3) - 3/2 + 6 +
C
= ( 9 + 20 - 18 + 72) /12 = 83/
12
==> F(1) = 83/12 + C.
Now we
will substitute with x= 0.
==> F(0) = 0 +
C
==> F = F(1) -
F(0).
==> F =
83/12
No comments:
Post a Comment