To find the anti derivative of
            1/(x^2+4x+4).
We know that x^2+4x+4 =
            (x+2)^2.
Therefore Integral { 1/(x^2+4x+4) }dx = Integral
            {1/(x+2)^2 } dx.
Now put (x+2) = t, then dx =
            dt.
Therefore Integral {1/(x+2)^2} dx = Integral 1/t^2
            dt
Integral {1/(x+2)^2} dx = Integral t^(-2)
            dt
Integral {1/(x+2)^2} dx = (1/(-2+1)) t^(-2+1) +
            Constant
Integral {1/(x+2)^2 } dx = (1/-1)(1/t)
            +C
Integral {1/(1+x)^2}dx = -1/t
            +C
Integral {1/(x+2)^2} = -1/(2+x) +C , as t =
            2+x.
Therefore the antiderivative of 1/(x^2+4x+4) =Integral
            {1/(x+2)^2} dx  = -1/(x+2) +C.
No comments:
Post a Comment