lim [ln (1+nx)]/x=lim
(1/x)*ln(1+nx)
We'll use the power property of the
logarithm:
lim [ln (1+nx)]/x=lim
ln[(1+nx)^(1/x)]
The limit will override the logarithm and
we'll go near the function (1+nx)^(1/x).
ln lim
(1+nx)^(1/x) = ln lim [(1+nx)^(1/nx)]*n
ln lim
(1+nx)^(1/x)=ln e^n
ln lim (1+nx)^(1/x)=n*ln
e
ln lim
(1+nx)^(1/x)=n
But, from hypothesis, lim [ln
(1+nx)]/x=3, so n=3.
No comments:
Post a Comment