To solve
2^x+4^(x+1)/2 =
12.
Rewrite as:
2^x+4*4^x /2 =
12
2^x+2*(2^x)^2 = 12 , as 4^x = (2^2)^x =
(2^x)^2
y +2y^2-12 = 0, where y =
2^x.
2y^2 +y-12 = 0
y =
{-1+sqrt(1+4*2*12)}/4
y =
{-1+sqrt97}/4
y =
{-1-sqrt97}/4
Therefore 2 ^x =
(-1+sqrt97)/4
2log2 = {log(-1+sqrt97/4} / log
2
x = log {(-1+sqrt97)/4 }/
log2.
But if we take the middle term, 4^(x+1)/2
= 4^((x+1)/2):
4 = 2^2. So 4^((x+1)/2) = 2^2((x+1)/2) =
2^(x+1).
Now the equation could be rewritten
as:
2^x+2^(x+1) =
12
(2^x)(1+2) = 12
(2^x)(3)
=12
2^x = 12/3 = 4 = 2^2
2^x =
2^2
x = 2
No comments:
Post a Comment