We notice that if we'll add log 12 (3)=a and log 12 (5)=b, we'll
get:
log 12 (3) + log 12 (5) = a + b
(1)
Since the bases are matching, we'll apply the rule of
product:
log 12 (3) + log 12 (5) = log 12
(3*5)
log 12 (3) + log 12 (5) = log 12 (15)
(2)
We'll substitute (1) in (2):
a + b
= log 12 (15)
But log 12 (15) = 1/log 15
(12)
1/log 15 (12) = a + b
log 15 (12)
= 1/(a+b) (3)
log 15 (12) = log 15
(4*3)
log 15 (4*3) = log 15 (4) + log 15
(3)
log 15 (4) = log 15 (12) - log 15 (3)
(*)
Now, we'll calculate log 15
(20):
log 15 (20) = log 15 (4*5)
log 15
(4*5) = log 15 (4) + log 15 (5)
log 15 (4) = log 15
(20) - log 15 (5) (**)
We'll write log 15 (3) with
respect to log 12 (3):
log 15 (3) = log 12 (3)*log 15
(12)
log 15 (3) = a*1/(a+b)
We'll write
log 15 (5) with respect to log 12 (5):
log 15 (5) = log 12 (5)*log
15 (12)
log 15 (5) = b*1/(a+b)
We'll
put (*) = (**):
log 15 (12) - log 15 (3) = log 15 (20) - log 15
(5)
We'll add log 15 (5) both
sides:
log 15 (20) = log 15 (12) - log 15 (3) + log 15
(5)
log 15 (20) =
(1+b-a)/(a+b)
No comments:
Post a Comment