Thursday, November 28, 2013

given the polynomial f=4x^3-12x^2+mx+n find m, n if f(x)=0 for x=i

Given the polynomial f=4x^3-12x^2+mx+n find m, n if f(x)=0
for x=i.


If f(i) = 0, then i is the root of
4x^3-12x^2+mx+n.


Since complex roots appear in pairs , if i
is a root then -i os also a root..


Therefore f(x) the
factors, (x+i)(x-i) = x^2+1.


Therefore  we can write
4x^3-12x^2+mx+n =
(x^2+1)(ax+b).


4x^3-12x^2+mx+n = ax^3+bx^2+ax+b.


We
equate the coefficients of like terms:


a = 4,  b=
=-12,


m = a = 4


n = b =
-12.


Therefore  m = 4 and n =
-12.


Therefore
4x^3-12x^2+mx+n = x^3-12x^2+4x-12.

No comments:

Post a Comment

How is Anne's goal of wanting "to go on living even after my death" fulfilled in Anne Frank: The Diary of a Young Girl?I didn't get how it was...

I think you are right! I don't believe that many of the Jews who were herded into the concentration camps actually understood the eno...