To determine the absolute value of z, we'll have to determine
first, the real part and the imaginary part of z.
z = a +
bi
Re(z) = a and Im(z) = b
z' is the
conjugate of z, therefore z = a+ bi and z' = a - bi
2(a+bi) - a + bi
= 3 + 4i
2a + 2bi - a + bi= 3 + 4i
a +
3bi = 3 + 4i
Comparing both sides, we'll get: a = 3 and 3b = 4
=> b = 4/3
The absolute value of
z:
|z| = sqrt[Re(z)^2 + Im(z)^2]
|z| =
sqrt[3^2 + (4/3)^2]
|z| = sqrt(9 +
16/9)
The absolute value is: |z| =
(sqrt97)/3
No comments:
Post a Comment