To find the first derivative of
tan^4x(x+1)^4.
Let f(x) ={
tan(x+1)^4}^4.
We know d/dx(tanx )=
sec^2x.
We know d/dx{f(x)}^n = n
{f(x)}^(n-1)*f'(x).
We know d/dx (u(v(x)) =
(d/dv){u(v(x)}{dv(x)/dx}.
Therefore d/dx{tan(x+1)^4}^4 =
d/dv(x(tanv)^4 * dv/dx, where v =
(x+1)^4.
d/dx{tan(x+1)^4}^4 = {4(tanv)^3sec^2v}
dv/dx.
d/dx{tan(x+1)^4}^4 = {4[tan(x+1)^4]^3sec^2 (x+1)^4}
d/dx(x+1)^4.
d/dx(tan(x+1)^4}^4 =
{4[tan(x+1)^4]^3sec^2(x+1)^4}{4(x+1)^3
Therefore
d/dx{tan(x+1)^4}^4 = 16(x+1)^3{[tan(x+1)^4]^3secx^2(x+1)^4}.
No comments:
Post a Comment