We'll determine first
(fofofof)(x)
(fofofof)(x)=f(f(f(f(x))))
fof(x)=f(f(x))=[f(x)]^2-[f(x)]^4
fof(x)=(x^2-x^4)^4=(x^2-x^4)^2
*
[1-(x^2-x^4)^2]
fof(x)=(x^2-x^4)^2(1-x^2+x^4)(1+x^2-x^4)
Well
put
(fof)(x)=g(x)
f(f(f(x)))=f(g(x))=[g(x)]^2-[g(x)]^4
f(f(f(x)))=f(g(x))=(x^2-x^4)^4[1-(x^2-x^4)^2]^2-(x^2-x^4)^8[1-(x^2-x^4)^2]^4
h(x)=(x^2-x^4)[1-(x^2-x^4)^2]^2*{1-(x^2-x^4)^2[1-(x^2-x^4)^2]^2}
f(h(x))=(x^2-x^4)^8
*[1-(x^2-x^4)^2]^4 {1-(x^2-x^4)^2
[1-(x^2-x^4)^2]^2}^2-(x^2-x^4)^32*[1-(x^2-x^4)^2]^16*{1-(x^2-x^4)^2*[1-(x^2-x^4)^2]^2}^8
Now
, we'll
determine(fofofof)(1)=f(h(1))
f(h(1))=(1^2-1^4)^8*[1-(1^2-1^4)^2]^4*{1-(1^2-1^4)*[1-(1^2-1^4)^2]^2}^2-(1^2-1^4)^32*[1-(1^2-1^4)^2]^16*{1-(1^2-1^4)[1-(1^2-1^4)[1-(1^2-1^4)^2]^2}^8
f(h(1))=0*1(1-0)-0*(1-0)(1-0)=0
The
value of composition of functions is (fofofof)(1)=0.
No comments:
Post a Comment