3x + 2y + 4z =
20..............(1)
13x + 12y + z =
4...............(2)
x + y + z =
9....................(3)
We have a system of three
equations and three variables. Then, we will use the substitution and elimination method
to solve the system.
Let us rewrite
(3).
x + y + z = 9
==>
x = (9 - y -z)
We will substitute in (1) and
(2).
3x + 2y + 4z =
20
==> 3(9-y-z) + 2y + 4z =
20
==> 27 - 3y - 3z + 2y + 4z =
20
==> 7 - y + z =
0
==> y - z = 7
....................(4)
13x + 12y + z =
4........(2)
==> 13( 9- y - z) + 12y + z =
4
==> 117 - 13y -13z + 12y + z =
4
==> 113 - y - 12z =
0
==> y + 12z = 113
..............(5)
Now we will subtract (4) from
(5):
==> 13z =
106
==> z= 106/
13
==> y= 7+ z = 7 + 106/13 =
197/13
==> y=
197/13
==> x = 9 - y z = 9 - 197/13
- 106/13
= ( 117 - 197 - 106)/13 = -186/
13
==> x= -186/
13
No comments:
Post a Comment