We'll use the formula of the cosine of sum or difference of
angles and the identity of double angles.
cos(x+y) = cos x*cos y -
sin x*sin y
We'll raise to square both
sides:
[cos(x+y)]^2 = (cos x*cos y - sin x*sin
y)^2
We'll expand the
binomial:
[cos(x+y)]^2 = (cos x*cos y)^2 - 2(cos x*cos y*sin x*sin
y) + (sin x*sin y)^2 (1)
cos(x-y) = cos x*cos y + sin x*sin
y
We'll raise to square both
sides:
[cos(x-y)]^2 = (cos x*cos y + sin x*sin
y)^2
We'll expand the
binomial:
[cos(x-y)]^2 = (cos x*cos y)^2 + 2(cos x*cos y*sin x*sin
y) + (sin x*sin y)^2 (2)
We'll add (1) and (2) and we'll
get:
[cos(x+y)]^2 + [cos(x-y)]^2 = 2(cos x*cos y)^2 + 2(sin x*sin
y)^2 (*)
We'll write the double angle
identity:
cos 2x = (cos x)^2 - (sin x)^2
(3)
cos2y = (cos y)^2 - (sin y)^2
(4)
We'll multiply (3) and (4) and we'll
get:
cos2x*cos2y = (cos x*cos y)^2 - (cos x)^2*(sin y)^2 - (sin
x)^2*(cos y)^2 + (sin x*sin y)^2 (5)
The expresison will
become:
E = 2(cos x*cos y)^2 + 2(sin x*sin y)^2 - (cos x*cos y)^2 +
(cos x)^2*(sin y)^2 + (sin x)^2*(cos y)^2 - (sin x*sin y)^2
E = (cos
x*cos y)^2 + (sin x*sin y)^2 + (cos x)^2*(sin y)^2 + (sin x)^2*(cos
y)^2
We'll factorize and we'll get:
E =
(cos y)^2*[(cos x)^2 + (sin x)^2] + (sin y)^2*[(sin x)^2 +(cos
x)^2]
But, the Pythagorean identity states
that:
(cos x)^2 + (sin x)^2 = 1
E =
(cos y)^2 + (sin y)^2
E =
1
The value of the expression is E =
1.
No comments:
Post a Comment