Supposing that C(n,k) are binomial coefficients, we'll recall
the binomial theorem:
(1 + x)^n = (1 + C(n,1)*x + C(n,2)*x^2 + ... +
C(n,k)*x^k + ... + C(n,n)*x^n)
If we'll consider the terms of
binomial theorem as functions and if we'll determine the definite integral of the terms of
binomial theorem, we'll get:
Int (1+x)^ndx = Int [1 + C(n,1)*x +
C(n,2)*x^2 + ... + C(n,k)*x^k + ... + C(n,n)*x^n]dx
We'll impose the
limits of integration x = 0 to x = 1
We'll manage the left
side:
Int (1+x)^ndx = (1 + x)^(n+1)/(n+1)
F(1)
We'll apply Leibniz Newton:
F(1) =
(1 + 1)^(n+1)/(n+1) = (2)^(n+1)/(n+1)
F(0) = (1 + 0)^(n+1)/(n+1) =
(1)^(n+1)/(n+1)
Int (1+x)^ndx = F(1) -
F(0)
Int (1+x)^ndx = (2)^(n+1)/(n+1) -
(1)^(n+1)/(n+1)
We'll factorize and we'll
get:
Int (1+x)^ndx = [(2)^(n+1) - 1]/(n+1)
(1)
We'll determine now the definite integral of each term of
binomial expanssion:
Int [1 + C(n,1)*x + C(n,2)*x^2 + ... +
C(n,k)*x^k + ... + C(n,n)*x^n]dx = Int dx + Int C(n,1)*x dx + .. + Int
C(n,n)*x^n]dx
Int [1 + C(n,1)*x + C(n,2)*x^2 + ... + C(n,k)*x^k +
... + C(n,n)*x^n]dx = x + C(n,1)*x^2/2 + .... +
C(n,n)*x^(n+1)/(n+1)
We'll apply Leibniz
Newton:
F(1) = 1 + C(n,1)*1^2/2 + .... +
C(n,n)*1^(n+1)/(n+1)
F(0) = 0 + C(n,1)*0^2/2 + .... +
C(n,n)*0^(n+1)/(n+1)
Int [1 + C(n,1)*x + C(n,2)*x^2 + ... +
C(n,k)*x^k + ... + C(n,n)*x^n]dx = F(1) - F(0)
Int [1 + C(n,1)*x +
C(n,2)*x^2 + ... + C(n,k)*x^k + ... + C(n,n)*x^n]dx = 1 + C(n,1)/2 + .... + C(n,n)/(n+1)
(2)
Comparing (1) and (2), we notice that are exactly the terms from
the equality that has to be demonstrated.
Based on
binomial theorem, the requested inequality
1+1/2*C(n,1)+c(n,2)/3+..+C(n,n)/(n+1)=[2^(n+1)-1]/(n+1) is verified, for any natural number
n.
No comments:
Post a Comment