The given expression is a product of the factors that are
2 pairs of brackets.
We'll remove the brackets knowing the
fact that multiplication of numbers is distributive over addition of
numbers.
( 5x^3- 2x) ( 3x^2+x-8) = 5x^3( 3x^2+x-8) - 2x(
3x^2+x-8)
We'll remove the brackets from the 1st resulted
terms:
5x^3( 3x^2+x-8) = 5x^3*3x^2 + 5x^3*x -
5x^3*8
5x^3( 3x^2+x-8) = 15*x^(3+2) + 5*x^(3+1) -
40x^3
5x^3( 3x^2+x-8) = 15*x^5 + 5*x^4 - 40x^3
(1)
We'll remove the brackets from the 2nd resulted
terms:
- 2x( 3x^2+x-8) = -2x*3x^2 - 2x*x +
16x
- 2x( 3x^2+x-8) = -6x^3 - 2x^2 + 16x
(2)
We'll add (1) +
(2):
15*x^5 + 5*x^4 - 40x^3 - 6x^3 - 2x^2 +
16x
We'll combine like
terms:
(5x^3- 2x) (3x^2+x-8) = 15x^5 + 5x^4 -
46x^3 - 2x^2 + 16x
No comments:
Post a Comment