We'll write the numerator and denominator in polar
form:
z = r(cos t + i*sin t)
The reason
of putting the numerator and denominator in polar form is to use Moivre's
rule.
We'll put the numerator in polar
form:
z1 = 1+i
Re(z1)
=1
Im(z1) = 1
r1 = sqrt(1^2 +
1^2)
r1 = sqrt2
tan t =
Im(z1)/Re(z1)
tan t = 1/1
t = arctan
1
t = pi/4
z1 = sqrt2(cos pi/4 + i*sin
pi/4)
(1+i)^13 = [sqrt2(cos pi/4 + i*sin
pi/4)]^13
We'll use Moivre's
rule:
(1+i)^13 = 2^(13/2)(cos 13pi/4 + i*sin
13pi/4)
(1+i)^13 = 2^(13/2)(cos 5pi/4 + i*sin
5pi/4)
We'll put the denominator in polar
form:
z2 = 1 - i
Re(z2)
=1
Im(z2) = -1
r2 = sqrt(1^2 +
(-1)^2)
r2 = sqrt2
t2 = arctan
-1
t2 = -pi/4
z2 = sqrt2(cos -pi/4 +
i*sin -pi/4)
(1-i)^7 = [sqrt2(cos -pi/4 + i*sin
-pi/4)]^7
We'll use Moivre's
rule:
(1-i)^7 = 2^(7/2)*(cos -7pi/4 + i*sin
-7pi/4)
(1-i)^7 = 2^(7/2)*(cos (2pi-7pi/4) + i*sin
(2pi-7pi/4))
(1-i)^7 = 2^(7/2)*(cos pi/4 + i*sin
pi/4)
Now, we'll calculate the
ratio:
(1+i)^13/(1-i)^7 = 2^[(13-7)/2]*[cos (5pi-pi)/4 + i*sin
(5pi-pi)/4]
(1+i)^13/(1-i)^7 = 2^3* (cos pi + i*sin
pi)
Since cos pi = -1 and sin pi = 1, we'll
get:
(1+i)^13/(1-i)^7 =
-2^3
(1+i)^13/(1-i)^7 =
-8
The argument of the ratio
(1+i)^13/(1-i)^7 is pi.
No comments:
Post a Comment