We'll group the 1st and the last terms and the middle terms
together.
[sin(pi/3)+sin(4pi/3)]+[sin(2pi/3)+sin(3pi/3)]
Since
the function inside brackets are matching, we'll transform them into
products.
S=2sin[(pi/3+4pi/3)/2]*cos[(pi/3-4pi/3)/2]+2sin[(2pi/3+3pi/3)/2]*cos[(2pi/3-3pi/3)/2]
S=2sin(5pi/6)*cos(pi/2)+2sin(5pi/6)*cos(pi/6)
But
cos(pi/2)=0
S=2sin(5pi/6)*cos(pi/6)
We'll
write sin(5pi/6) = sin(6pi/6 -
pi/6)
sin(5pi/6)=sin(pi-pi/6)
sin(5pi/6)=sin(pi/6)
S=2sin(pi/6)cos(pi/6)
We'll
recognize the double angle
identity:
S=sin2*(pi/6)=sin(pi/3)
S=sqrt3/2
The
value of trigonometric sum is S=sqrt3/2.
No comments:
Post a Comment