We'll use the following
identity:
cos a + cos b = 2 cos[(a+b)/2]*cos [(a-b)/2]
(*)
We'll manage the left side and we'll create an even number of
terms, writing the middle term 2cos(n-1)x = cos(n-1)x +
cos(n-1)x.
We'll re-write the left
side:
cosnx + cos(n-1)x + cos(n-1)x +
cos(n-2)*x
We'll group the
terms:
[cosnx + cos(n-1)x] + [cos(n-1)x +
cos(n-2)*x]
We'll apply the identity
(*):
[cosnx + cos(n-1)x] = 2cos
[(n+n-1)x/2]*cos[(n-n+1)x/2]
[cosnx + cos(n-1)x] = 2cos
[(2n-1)x/2]*cos[(n-n+1)x/2]
[cosnx + cos(n-1)x] = 2cos
[(2n-1)x/2]*cos(x/2) (1)
[cos(n-1)x + cos(n-2)*x] = 2cos
[(n-1+n-2)x/2]*cos[(n-1-n+2)x/2]
[cos(n-1)x + cos(n-2)*x] = 2cos
[(2n-3)x/2]*cos(x/2) (2)
We'll add (1) +
(2):
LHS = 2cos [(2n-1)x/2]*cos(x/2) + 2cos
[(2n-3)x/2]*cos(x/2)
LHS = 2cos(x/2){cos [(2n-1)x/2] + cos
[(2n-3)x/2]}
We'll apply the identity
(*):
LHS = 2cos(x/2){2cos [(2n-1+2n-3)x/4]*cos
[(2n-1-2n+3)x/4]}
LHS = 2cos(x/2){2cos [(4n-4)x/4]*cos
[(2x)/4]}
LHS = 2cos(x/2){2cos [(4n-4)x/4]*cos
[(x)/2}
LHS = 4[cos(x/2)]^2*[cos (n-1)x] =
RHS
Since LHS = RHS, then the identity
cosnx + 2cos(n-1)x + cos(n-2)*x=4cos^2(x/2)*cos(n-1)x is verified,
for any real value of x and for any natural number
n>=2.
No comments:
Post a Comment