If x^4-kx^3-2x^2+x+4 is divide by x-3 , we get a
remainder 16, then
x^3-kx^3-2x^2+x+4-16 = x^4-kx^3-2x^2+x
-12 is perfectly divisible by x-3.
We actually divide
:
x-3) x^4-kx^3-2x^2 +x -12(
x^3
x^4
-3x^3
----------------------
x-3)
(-k+3)x^3 -2x^2( (-k+3)x^2
(-k+3)x^3 -
3(-k+3)x^2
-----------------------------------------------
x-3) (-3k
+7)x^2 + x (
((-3k+7)x
(-3k+7)x^2 -3(-3k+7)x
-----------------------------------------------------------
x-3)
(-9k +22)x -12 ( (-9k+22)
(-9k +22)x -3
( -9k +22)
-----------------------------------------------
0
Therefore -12
+3(-9k+22) = 0
-27k + 54 =
0.
-27k = -54.
k = -54/-27 =
2
or k = 2.
Therefore k = 2
for which x^4-kx^3 -2x^2+x+4 diveided by x-3 gives a remainder of
16.
No comments:
Post a Comment