You are absolutely right. The series given is not an AP or
            a GP as neither is the difference between consecutive terms common nor is the ratio of
            consecutive terms the same. But if you notice carefully the series is just made up by
            the squares of consecutive numbers. 1= 1^2 , 4= 2^2 , 9= 3^3, 16= 4^2 , 25= 5^2 and so
            on.
Now the relation for the sum of the first n squares is
            given by the relation: n*(n+1)*(2n+1) / 6
Therefore the sum
            of the first n terms of the series is
= n*(n+1)*(2n+1) /
            6.
No comments:
Post a Comment