Given the derivative, f;(x) = 3x^2 - 6x +
3
Also, given f(0) = -4.
We need to
determine the function f(x).
We know
that:
f(x) = integral f'(x) :
Then, let
us integrate f'(x)"
==> f(x) = intg
f'(x)
= intg ( 3x^2 - 6x + 3)
dx
= 3x^3/3 - 6x^2/ 2 + 3x +
C
==> f(x) = x^3 - 3x^2 + 3x +
C
But given that f(0) = -4
==>
f(0) = 0 - 3*0 + 3*0 + C = -4
==> C =
-4
==> f(x) = x^3 - 3x^2 + 3x -
4
No comments:
Post a Comment