To  calculate z+1/z if z =
            (-1+i*3^1/2)/2
z =
            (-1+6*3^(1/2)/2
z = (-1/2) + ((sqrt3)/2)
            i.
1/z = 1/{(-1/2+
            ((sqrt3)/2)i}
1/z = {[ (-1/2)- ((sqrt3)/2)i)]/{[ (-1/2) +
            ((sqrt3)/2)i)]*{[ (-1/2)* ((sqrt3)/2)i)]}. We multiplied both numerator and denominator
            by {[ (-1/2)- ((sqrt3)/2)i)].
1/z = {[ (-1/2) -
            ((sqrt3)/2)i)]/{1/4 - 3/4}.
1/z = (-2){[ (-1/2) -
            ((sqrt3)/2)i)].
1/z = 1+
            (sqrt3)i.
Therefore z+1/z =  (-1/2) + ((sqrt3)/2) i + 1+
            (sqrt3)i.
z 1/z = (1-1/2) +( sqrt3/2
            +sqrt3)i.
 z+1/z = (1/2)
            +(3/2)(sqrt3)*i.
No comments:
Post a Comment